THERMAL DIFFUSION IN GAS MIXTURES

T. N. Abramenko and K. A, Shashkov » _ UDC 533.735

Theories describing the process of separation by thermal diffusion in gas mixtures are con-
sidered. It is known that such thermodiffusion can be found in mixtures of ideal gases.

Experimental data demonstrates that in nonisothermal systems consisting of several components mass
transfer oceurs because of a temperature gradient which produces "separation" in an initially homogeneous
mixture, i,e., leads to a nonequilibrium distribution of components over space. This transfer phenomenon
has been termed thermodiffusion,

A number of studies [1-15] have considered thermodiffusion separation in gas mixtures, but the question
of the nature of this process has still not been answered decisively.

In contrast to other transfer phenomena, thermodiffusion is significantly dependent on the nature of inter-
molecular interactions [6, 7, 16]. As a rule, this dependence is dealt with by commencing from the fact that
to determine the thermodiffusion constant a larger number of collision integrals are used than in determina-
tion of other transfer properties. The poor agreement between experimental and theoretical results on ther-
modiffusion is usually related to the significant dependence of the latter on the nature of intermolecular in-
teractions [7].

A special place in thermodiffusion theory is occupied by the question of the absence of thermodiffusion
separation in mixtures of gases, the molecules of which interact by a law inversely proportional to the fifth
power of distance (Maxwell molecules). This fact also explains the strong dependence of thermodiffusion on
the nature of the intermolecular interactions. '

Meizner [17, 18] and Haase [19-21] feel that thermodiffusion exists in mixtures of ideal gases. Kotousov
[6] has demonstrated that thermodiffusion and the diffusion thermoeffect disappear in such mixtures.

Grew and Mundy [22], in an experimental study of the temperature dependence of the thermodiffusion con-
stant in a constant mixture of argon and neon, found a minimum in this dependence (anomalous behavior) at a
temperature of 149°K. This can be related to the theoretical temperature dependence of the thermodiffusion
constant of an equimolar mixture of He®—He!, which has a solution at T ~ 0,2°K (Fig. 1) [25]. A number of in-
vestigators [23, 24] have related the presence of a minimum in the temperature dependence of the thermodiffu-
sion constant of the constant Ar—Kr mixture to formation of dimers — "products" of intermolecular interac-
tion. All these facts indicate that the thermodiffusion separation process is dependent on the nature of inter-
molecular interactions, since the temperature dependence of the thermodiffusion constant is regarded as a
characteristic of the intermolecular interaction process. '

Such divergence in opinions on the thermal separation process in gas mixtures is aggravated by the ab-
sence of any clear explanation of the nature of the thermodiffusion separation process [1]. We should note that
a clear explanation of the mechanism of any transfer process implies description of its elementary molecular-
kinetic theory. Fiirth [26] has developed such an elementary theory, using the assumption of the existence of
two molecular free path lengths for transfer, of mean numerical density (/;) and mean velocity (I}) of molecules,
such that l!l = al;, with the quantity a entering the expression characterizing the thermodiffusion constant of
the gas mixture. Laranjeira [27-29] treated a as a characteristic of the degree of influence possessed by the
nature of intermolecular forces on the thermodiffusion process. In the limiting case of an ideal one-component
gas, his elementary kinetic theory indicates the presence of a flow of molecules at constant gas pressure far
from the state of rarefaction, which is not supported by either the thermodynamics of irreversible processes
or strict molecular-kinetic theory of gases.

Monchick and Mason [30] treated the mechanism of thermodiffusion separation in gas mixtures in terms
of the theory of "free flight" of molecules. In their opinion, thermodiffusion develops only as a consequence of
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a dependence of molecular collision frequency upon velocity. While giving a formally correct explanation of

the process of thermodiffusion separation, the authors of [30} gave an incorrect graphic interpretation of the
mechanism, based upon the existence of two "wings" in the molecular distribution function over velocity (Fig. 2).
The two "wings" of this function were treated in [30] as two flows of molecules moving in opposite directions
relative to the temperature gradient, leading to thermodiffusion separation of the gas mixture. However it
should be noted that Afj /|VInT| is not a molecular flow, and the presence of a "negative" wing in the molecular
distribution over velocity indicates that within the gas mixture there has occurred a redistribution of molecules
over velocity due to the presence of a temperature gradient, which leads to development of a molecular flow.

We note that this theory does not support the absence of thermodiffusion in the mixtures Ne? —=NH; (%, = 0.38)
and Ne?—NH;, (x4 = 0.72) [8]. :

Dickel [31] notes that the effect of thermal separation appearing in a mixture with temperature gradient
conditions is composed of two components: a) thermodiffusion, which causes the appearance of a concentration
gradient in the mixture; b) thermal concentration shift, developing in mixtures of real gases because of excess
thermodynamic functions., :

Thus in Dickel's classification thermodiffusion is an effect observed only in ideal mixtures.

The review presented above demonstrates that the literature cited is not of a single opinion on the nature
of thermodiffusion separation in gas mixtures, and that the concept of the greater sensitivity of thermodiffusion
to the nature of intermolecular intéractions, as compared to other transfer properties, relies upon the assump-
tion of the existence of two free path lengths, and absence of thermodiffusion in mixtures of Maxwell molecules.

In [6] it was shown that the presence of thermodiffusion and the diffusion thermoeffect characterizes the
nonidealness of the mixture components. This fact was proved in [6] in the following manner, Since in the
stationary state the condition dWJ"l = '-leah/acl, where J' = J — 8h/8¢,J;, then by specifying stationary
boundary conditions for temperature or concentration, we can fmd a stationary state such that V(Bh/a c) =0,
so that d1vJ('l = 0 also, The condition V(®h/8¢c;) = 0 permits determination of the unique ratio VT/Ve¢; at which
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Fig. 2, Molecular distribution over velocity: a) Hy—
He, T = 500°K; 1) x; = 0.1; 2) 0.25; 3) 0.5; 4). 0,75; 5)
0.9; b) He—Ar, T = 80°K; 1) x; = 0.25; 2) 0,5; 3) 0.75.
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Fig, 3. Thermodiffusion
constant of He —Ar mixture
versus temperature, x; =
0.512,

According to this expression, thermodiffusion in mixtures of ideal gases is absent, since in this case azh/axf =
0. Calculations with this expression show that for an equimolar He —Ar mixture at T = 300°K and p = 1 atm
|aT| =107, Calculation of o1 with experimental data on the excess thermodynamic functions hE [6] shows

that jo| ~ 0.4, which is confirmed by the data of [32] (Fig. 3).

We will now turn to an evaluation of the temperature dependence of the thermodiffusion constant of an
argon—krypton mixture, Later experimental data [33] obtained from the temperature dependence of the ther-
modiffusion constant of this mixture demonstrate that the presence of a minimum in this function is related
to condensation of the heavy component in the measurement cell, while the "sharp" minimum in the tempera-
ture dependence of the thermodiffusion constant of He?—He? at very low temperatures is in our opinion related
to the fact that the mean free path length of molecules in He? tends to infinity as T — 0°K and a continuous
hydrodynamic description of transfer processes is impossible. It is then necessary to describe the transfer
processes with the aid of quasiparticle (elementary excitation) concepts [31, 36].

We will now consider the mechanism of thermodiffusion separation in gas mixtures [37]. We limit our
description of the thermodiffusion process to the framework of the phenomenological thermodynamics of ir-
reversible processes, In a coordinate system moving at the mean-mass velocity,

Jq = Jioy

. o vl
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We rewrite the expressions for heat and mass fluxes in the form

- T = g, O\ _, o
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where g* = 6% + dh/d ¢y is the transfer energy; 6% = ac;c,92g/dc} is the transfer heat, From theseé, the total
mass flux is '
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We define the thermal conductivity coefficient in the nonstationary state
A= Aao -+ Aexp(—¢/7).
For the total heat flux
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For the reduced flux

dpy 0D
7¥DT = aTC] —-OCL:‘ ‘—7'.;——‘ k.‘..

With the aid of these experiments we obtain
Jy= —pDiexp(—t1)yT; 3, =pDiexp(—t/)yT.
The same results may be obtained with the methods of strict molecular-kinetic theory of gases,

From this it is evident that thermodiffusion separation in 2 binary mixture is related to the development
of two mass flows, moving in opposite directions under the influence of the temperature gradient.

We will now offer an elementary molecular-kinetic theory of thermodiffusion [37].

We assume that a binary gas mixture of weakly interacting molecules* is located between two infinite
horizontal planes, the temperatures of which are constant, but unequal, with the temperature gradient being
sufficiently amall. If is obvious that both the temperature and concentration of the mixture will be functions
of the ©oordinate. We define the molecular flow of the first sort through a unit area moving at the mean-
numeric velocity in the plane z = 0. The molecular flow of the first sort through one side of elementary area
is equal to !/ 4 1V1, and each molecule transfers its mass and velocity on the average not to the plane z = 0,
but to the plane z = —u4l;, where there exists a probability of encountering another molecule before arriving
in the plane z = 0. Here u; is a numerical factor. Then
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The plus index in the notation for the molecular flow of the first component indicates that it is considered in -
the direction from the negative to the positive side. Similarly,
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The total flux of molecules of the first component is equal to )
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gince in the case of a gas of solid spheres as T — =

or
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- — =0,
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*The solid sphere model describes weak molecular interaction well at high temperatures where mutual attrac-

o

tion of the molecules becomes ingignificant: B(T) = 2N V {exp (—(p(r)/kT)—l}err —0asT — o,
0

1This same result follows from Laranjeira's theory [27-29] at I =1.
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If the pressure in the mixture is constant, then the condition dp/dz = 0 must be satisfied. In the case of

an ideal gas considered here from the condition dp/dz = d(nkT)/dz = 0 we obtain

dny T dny T
AR — 14 =2 2,
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since x;(1 +(dn/dT) T /n3)=T. dx,/dT =sT (in the stationary state sT = kp and kr, =k, = kT) Here ky is the
thermodiffusion ratio, characterizing the process of thermodiffusion separatmn in the statlonary state; sy =
kypf (t/7) is the thermodiffusion ratio characterizing the same process in the nonstatmnary state., Then

Iy = —nD f(t/r)

, Ly=nDij (t/t)

According to the sfrict molecular-kinetic theory of gases [1-2], the dynamics of the molecular collision
process, which are related to the nature of the intermolecular forces, affect the transfer processes through the
so-called collision integrals
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which appear in the form of dimensionless groups in the expressions for the transfer coefficients
A=0Qe.2/QU1 B = (5Q(1.2) _4QU.H/QE.1, C = QU.2/Q(.1),

In the case of an ideal gas ¢(r) — 0, rp, =b, x =7—2arecsinl = 0. It can be shown, for example, that
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and the value of this quantity should be close to unity, Consequently, the transfer coefficients of a mixture of
ideal (weakly interacting) gases depend only on the magnitude of the molecular mass of the components, the
composition of the mixture, the temperature, and the pressure.

We will now consider a binary mixture of real gases located under a temperature gradient condition,
Limiting ourselves to consideration of collisions of only two molecules for the sake of simplicity, we write
the equation of state of the gas in the form

pv = kT( 14 M) )
0
Since the gas mixture is under constant pressure, the constantpx:essure condition (Vp =0) leads to the expression
dn, 1 T 1+ 2nB—B; { . dny 1 ]
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TA similar relatlonsmp can be obtained for the equation of state
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characterizes the thermal concentration shift produced by the excess thermodynamic function,

We will now consider the concept of an ideal gas. Strictly speaking an ideal gas is a set of mathematical
(imaginary) points of infinitely small dimensions., There are no interaction forces between these points, i.e.,
an ideal gas is a mathematical abstraction. In statistical physics the concept of an ideal gas implies a gas
which has interactions between molecules so weak that they may be neglected. Physically, such neglect is
possible either when the molecular interaction is weak at any molecular separation, or when the gas is suffi-
ciently rarefied [38].

The examination of the process of thermodiffusion performed here treated the case of weak interaction
between the gas molecules, when the equation of state pv = kT is valid, and the case where binary molecular
collisions are considered and the equation of state contains a term considering the "nonidealness" of the gas,
It has been shown that thermodiffusion does not depend on the nature of molecular interactions and occurs in
mixtures of both ideal and real gases.

We note that in the case of a thermally inhomogeneous Knudsen gas there is no thermodiffusion, since
the latter transforms to thermoeffusion. In such a gas at an inhomogeneous femperature the pressure is no
longer constant but satisfies the condition p/QT =const and mass flows of each component are absent [3].

Unfortunately, it appears impossible to obtain the condition for absence of thermodiffusion and the diffu-
sion thermoeffect in mixtures of real gases at the present time.

The authors regard it their pleasant duty to thank Professor L. S. Kofousov for his valuable remarks
made in evaluating the present study.

NOTATION
T is the temperature;
Xy is the molecular fraction of lighter component;
¢y is the mass concentration;
Jq is the thermal flux in mean-mass velocity system;
_;1 is the reduced thermal flux;
h is the specific enthalpy;
ap is the thermodiffusion constant;
k is the thermodiffusion ratio;
By is the chemical potential of i-th component;
p is the density of mixture;
n is the numerical density of component molecules;
Dy is the mutual diffusion coefficient;
k is the Boltzmann's constant;
v is the volume;
B(T, %), C(T,x;) are the second and third virial coefficients;
J1 is the mass flow of first component;
Iy is the particle flow of first component;
Aoos Ags A are the mixture thermal conductivity coefficients in stationary state, at initial time, and

in nonstationary state;
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is the contribution of diffusion thermoeffect to mixture thermal conductivity;
ig the fime:

is the time for establishment of stationary state in system;
is the mean velocity;

is the mean molecular free path length;

is the thermodiffusion coefficient of first component;

is the pressure;

is the reduced molecular mass;

is the reduced velocity;

is the angle of inclination;

is the impact parameter;

is the distance of closest molecular approach;

is the intermolecular distance;

is the intermolecular interaction potential;

is the relative velocity;

is the excess enthalpy;

is the Avogadro's number,
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METHOD OF CRITICAL-TEMPERATURE DETERMINATION
FOR INDICATOR MATERIALS

B. G. Abramovich, V, V. Matveev, UDC 536,522.3
and V., V, Gavrilov

A method is described for measuring the switching temperature of an indic¢ator coating in the
range 50-1200°C,

Temperatures can be monitored by means of temperature-sensitive coatings, which provide rapid, fairly
simple, and exact monitoring of thermal processes {1, 2], Sometimes such coatings are used in conjunction
with traditional temperature transducers to provide additional information on the thermal state, but some-
times they are the only devices that can be employed.

Previously, these indicators were used only when high accuracy was not necessary or when other meth-
ods could not be used, but nowadays new types make it possible to measure temperature very precisely, and
the error may be comparable with that of many thermometers, For example, the TI indicators [3] clearly
allow ‘one to measure a temperature to 0.01 degree. However, the practical accuracy is dependent on the
error involved in measuring the critical temperature of the indicator itself,

There is therefore a need for precision methods of measuring switching temperatures, since this is the
only way the devices can be fully utilized; the phase transition in such an indicator always occurs at the same
temperature, no matter what the conditions of use. The problem is therefore to determine the melting point
with the highest precision,

Current methods of switching-point measurement employ visual definition of the melting boundary or
color transition in conjunction with temperature measurement at the boundary [1, 4].. There is a subjective
error in visual measurements, and this results in a substantial spread in the results, even though it is usual
to perform a series of measurements in order to obtain a reliable result.

' We have developed an objective method of switching-point definition that provides very precise melting-
point measurement over a wide temperature range.

The indicator is heated along with a thermally indifferent substance, and the melting is detected from '
the temperature difference as recorded with a differential thermocouple. The temperature difference is plotted
as a function of the temperature itself on a chart recorder,

We.used standard instruments made in this country; for example, the TPP thermoelectric thermometer
was used with a PDS~-021 XY recorder, an ¥-116 photoelectronic amplifier, and an SUOL oven,

Figure 1 shows the block diagram; the signal from the differential couple passes to the amplifier 5 and
then fo the Y input, while the X input receives the heating temperature, which is provided by one of the junc-
tions in the differential couple.

The indicator (temperaturefsensitiVe substance and bonding agent) is placed in the quartz crucible and
compacted; the crucible is then placed in the oven along with one junction of the differential couple, which is

Translated from Inzhererno-Fizicheskii Zhurnal, Vol, 36, No. 4, pp. 685-688, April 1979. Original
article submitted June 15, 1978,

0022-0841/79/3604- 0455 $07.50 ©1979 Plenum Publishing Corporation 455



